EconPapers    
Economics at your fingertips  
 

Solar and wind power generation forecasts using elastic net in time-varying forecast combinations

Dragana Nikodinoska, Mathias Käso and Felix Müsgens

Applied Energy, 2022, vol. 306, issue PA, No S0306261921012861

Abstract: Precise renewable energy feed-in forecasts are essential for an effective and efficient integration of renewables into energy systems, and research contributions that help to reduce the uncertainty related to renewables are in high demand. This importance will increase in the future, as renewable energies are the world’s fastest growing electricity generation capacities. Forecast combinations have been empirically proven to outperform individual forecasting models in many disciplines. Our work uses an elastic net method, with cross-validation and rolling window estimation, in the context of renewable energy forecasts. Namely, the forecast combinations are obtained using regional data from Germany for both solar photovoltaic and wind feed-in during the period 2010–2018, with quarter-hourly frequency. The dynamic elastic net estimation, preceded by dynamic data pre-processing, improves forecasting accuracy for both photovoltaic and wind power feed-in forecasts. Moreover, our forecasting framework outperforms benchmarks such as simple average and individual forecasts. Our forecasting framework can be applied widely to estimate renewable power in other countries, systems, or individual power plants.

Keywords: Forecast combinations; Forecast pooling; Shrinkage; Elastic net; Dynamic forecasts; Data pre-processing (search for similar items in EconPapers)
JEL-codes: C10 C53 Q47 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012861
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012861

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117983

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012861