EconPapers    
Economics at your fingertips  
 

An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting

Dongchuan Yang, Ju-e Guo, Shaolong Sun, Jing Han and Shouyang Wang

Applied Energy, 2022, vol. 306, issue PA, No S0306261921012952

Abstract: Short-term load forecasting is crucial for power demand-side management and the planning of the power system. Considering the necessity of interval-valued time series modeling and forecasting for the power system, this study proposes an interval decomposition-reconstruction-ensemble learning approach to forecast interval-valued load, in terms of the concept of “divide and conquer”. First, bivariate empirical mode decomposition is applied to decompose the original interval-valued data into a finite number of bivariate modal components for extracting and identifying the fluctuation characteristics of data. Second, based on the complexity analysis of each bivariate modal component by multivariate multiscale permutation entropy, the components were reconstructed for capturing inner factors and reduce the accumulation of estimation errors. Third, long short-term memory is utilized to synchronously forecast the upper and the lower bounds of each bivariate component and optimized by the Bayesian optimization algorithm. Finally, generating the aggregated interval-valued output by ensemble the forecasting results of the upper and lower bounds of each component severally. The electric load of five states in Australia is used for verification, and the empirical results show that the forecasting accuracy of our proposed learning approach is significantly superior to single models and the decomposition-ensemble models without reconstruction. This indicates that our proposed learning approach appears to be a promising alternative for interval load forecasting.

Keywords: Short-term load forecasting; Bivariate empirical mode decomposition; Decomposition-ensemble approach; Reconstruction; Bayesian optimization; Long short-term memory network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012952
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012952

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117992

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012952