A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms
Kefei Zhang,
Hua Cao,
Jesse Thé and
Hesheng Yu
Applied Energy, 2022, vol. 306, issue PA, No S030626192101312X
Abstract:
Accurate and reliable coal price prediction is of great significance to enhance the stability of the coal market. Numerous methods have been developed to improve the prediction performance. However, most of the studies adopt single model for coal price forecasting, and their accuracy and applicability are usually restricted. In this paper, we propose a novel hybrid VMD-A-LSTM-SVR model to achieve accurate multi-step ahead prediction of coal price. The proposed model consists of three valuable strategies. First, variational mode decomposition (VMD) decomposes the original coal price into several relatively regular sub modes to reduce the non-stationarity and uncertainty of the data. Second, the long short-term memory (LSTM) integrated with attention mechanism trains and predicts the decomposed modes individually to better capture the temporal information of historical data. Lastly, a support vector regression (SVR) model ensembles the predicted results of each mode into the final forecasted coal price. The experimental results of three typical coal price datasets demonstrate that the proposed strategies are all valuable for improving the forecasting performance. Moreover, the proposed model outperforms all state-of-the-art baseline models in terms of both model accuracy and stability. Extensive cross-comparisons of performance between models clearly indicate that the proposed hybrid algorithm is more effective and practical for coal price forecasting.
Keywords: Coal price forecasting; Variational mode decomposition (VMD); Attention mechanism; LSTM; SVR (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192101312X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s030626192101312x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().