EconPapers    
Economics at your fingertips  
 

Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition

Mukesh Upadhyay, Ayeon Kim, SalaiSargunan S. Paramanantham, Heehyang Kim, Dongjun Lim, Sunyoung Lee, Sangbong Moon and Hankwon Lim

Applied Energy, 2022, vol. 306, issue PA, No S0306261921013167

Abstract: Hydrogen produced by theelectrochemical water splitting is essential for expanding and utilizing renewable power sources and establishing a sustainable energy society. As renewable energy network widely established, the produced hydrogen can be utilized by connecting the energy demand and energy supply. The proton exchange membrane (PEM) water electrolyser technology is one of the ideal candidates for direct coupling with renewable energy sources. In recent years, bench-scale experiments, and computational fluid dynamics (CFD) simulation-based approaches are used to accelerate the advances in performance and cost of the technology. We studied the influence of the key performance parameter of a PEM water electrolyser, and a single channel-based three-dimensional CFD model was developed. The PEM water electrolyser CFD model is validated against in-house experiments, where the developed model successfully predicts the current–voltage polarization curve. The developed CFD model is then used to analyze the influence of temperature, cathode pressure, membrane thickness, porous transport layer porosity and water feed rate. The main observation from the numerical study was discussed to provide insight into the factors affecting the PEM water electrolyser performance.

Keywords: Renewable energy; Hydrogen generation; PEM water electrolyser; Computational fluid dynamics; Three-dimensional model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013167

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013167