EconPapers    
Economics at your fingertips  
 

Integrating learning and explicit model predictive control for unit commitment in microgrids

Yuchong Huo, François Bouffard and Géza Joós

Applied Energy, 2022, vol. 306, issue PA, No S0306261921013246

Abstract: In this paper, we apply flexibility-based operational planning method to microgrid (MG) unit commitment (UC). The problem is formulated based on model predictive control (MPC) paradigm. Conventionally, such paradigm requires the online solution of a mixed-integer optimization problem, which faces difficulties in practical field implementations in a low-power computing microgrid controller. The explicit model predictive control (EMPC) can address this problem of MPC by computing the control laws of MPC in an explicit form offline to enable fast online computation. However, the complexity of the explicit control laws usually grows exponentially with the dimension of the problem, which hinders the application of EMPC in larger systems. In this paper, we integrate learning and EMPC to develop a computationally efficient and rigorous approach for implementing flexibility-based unit commitment paradigms in a microgrid controller with limited computational power. The computational complexity of the proposed approach can be adjusted to meet the hardware limitation of any given microgrid controller, while preserving as much as possible the optimality of the full-fidelity EMPC. This overcomes the drawbacks of traditional EMPC. Moreover, compared to the existing learning-based methods for accelerating optimization algorithms, the proposed approach is able to handle the variables and constraints of the original unit commitment problem systematically, which guarantees the feasibility of its output unit commitment schedules. We conduct case studies to demonstrate the effectiveness of the proposed approach.

Keywords: Explicit model predictive control; Flexibility; Machine learning; Microgrid; Microgrid controller; Unit commitment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013246
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013246

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118026

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013246