EconPapers    
Economics at your fingertips  
 

Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells

Daya R. Nhuchhen, Song P. Sit and David B. Layzell

Applied Energy, 2022, vol. 306, issue PB, No S0306261921013039

Abstract: Achieving net-zero greenhouse gas emissions in cement production requires major reductions in both process and energy emissions. This study proposes an integrated low emission cement and power production (LECAPP) system that incorporates external reforming molten carbonate fuel cells to capture the CO2 emissions from a natural gas-fired cement plant. The system uses either natural gas or high-density polyethylene to generate the hydrogen demanded by the fuel cells while producing both low-carbon electricity (1,201 kWh/t clinker with a carbon intensity of 52 kgCO2/MWh, of which 1,000 kWh/t clinker is available for export) and a CO2 stream for sequestration. The carbon intensity assigned to clinker production (57 kgCO2/t clinker) is a 92% reduction from a clinker plant without carbon management. When plastics are used to generate hydrogen for the fuel cells, 144 kg plastics/t clinker would be diverted from landfills. Compared to other carbon capture methods, the LECAPP system performs better and its overall specific primary energy consumption is estimated to be in the range of 1.52–5.94 gigajoules per tCO2 avoided. The LECAPP system offers promise as a viable technology in the transition to net zero-emission energy systems.

Keywords: Cement plant emissions; Molten Carbonate Fuel Cell; Carbon capture; Power co-generation; HDPE disposition; ASPEN plus modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013039
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013039

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118001

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013039