Thermochemical reduction modeling in a high-temperature moving-bed reactor for energy storage: 1D model
Wei Huang,
David Korba,
Kelvin Randhir,
Joerg Petrasch,
James Klausner,
Nick AuYeung and
Like Li
Applied Energy, 2022, vol. 306, issue PB, No S0306261921013106
Abstract:
The design of robust and efficient high-temperature thermochemical reactors and determination of operating conditions are critical steps toward enabling high-efficiency long-duration solar energy storage. This work presents a computational model for the thermal reduction of a metal oxide material (Mg-Mn-O) up to 1450 °C and the coupled complex transport phenomena in a novel tubular thermal reactor design that features the capability for a high extent-of-reduction (high energy storage density) and inherent heat recuperation. A one-dimensional model coupling counter-current gas–solid flow, two-phase heat transfer, thermochemical redox reactions, and species transport in a moving-bed reactor is developed. Simplified versions of the model are validated with published results in the literature for packed beds with both inert and reactive particles; the fully coupled model is also validated with experimental measurements of a moving-bed reactor in terms of local temperatures and oxygen release at the exit. Detailed comparisons on the effects of different boundary conditions in the reaction zone (prescribed wall temperature vs. heat flux conditions) and formulations based on a simple uniform flow assumption vs. plug flow using Ergun equation for gas flow are investigated. The results are compared with experimental measurements, and for all cases, the energy flow components in the reactor system and the thermal to chemical conversion efficiency and overall system efficiency are computed. The predicted high thermal-to-chemical efficiency ∼95% and system efficiency ∼30% agree with experimental measurements.
Keywords: Thermochemical energy storage; Moving-bed reactor; High-temperature; Thermal reduction; Heat transfer (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013106
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().