EconPapers    
Economics at your fingertips  
 

Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system

Shiyu Yang and Man Pun Wan

Applied Energy, 2022, vol. 306, issue PB, No S0306261921013362

Abstract: Machine-learning (ML) –based building models have been gaining popularity in constructing model predictive control (MPC) for building energy management applications. However, ML-based building models are usually nonlinear so to capture the building dynamics, leading to high computation load for MPC, prohibiting its application for real-time building control. This study proposes a ML-based MPC with an instantaneous linearization (IL) scheme, which employs real-time building operation data to linearize the nonlinear ML-based building model for constructing a linear MPC at each control interval. The proposed ML-based MPC with IL system is implemented to control an air conditioning system in an office of a general hospital building located in Singapore for experimental evaluation of its control performance. The ML-based MPC with IL is compared to a ML-based MPC that directly uses a nonlinear ML-based building model and the original reactive-control-based thermostat of the office. Results show that the ML-based MPC with IL significantly reduced the computation time (by more than 70 times) as compared to the ML-based MPC while retained most of the advantages of the ML-based MPC. The ML-based MPC with IL and the ML-based MPC achieved 31.6% and 26.0% reductions, respectively, in cooling energy consumption as compared to the original thermostat. Meanwhile, both the MPC systems significantly improved indoor thermal comfort for the office as compared to the original thermostat. The study demonstrated that using IL for ML-based MPC could substantially improve computation efficiency with no obvious performance degradation in terms of thermal comfort and energy saving.

Keywords: Model predictive control; Machine learning; Recurrent neural network; Instantaneous linearization; Air conditioning and mechanical ventilation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013362
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013362

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118041

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013362