Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression
Weihan Li,
Yue Fan,
Florian Ringbeck,
Dominik Jöst and
Dirk Uwe Sauer
Applied Energy, 2022, vol. 306, issue PB, No S0306261921013933
Abstract:
The knowledge of the dynamic available charging and discharging power of the battery is a piece of essential information for the safety and longevity of the battery energy storage systems. An accurate real-time prediction of these quantities is very challenging due to the high nonlinearities of battery dynamics. In this paper, an electrochemical model-based online state-of-power prediction algorithm under different time horizons is developed for a safer and more reliable operation of lithium-ion batteries. The safety constraints, which define the safety operation area for the power prediction, are designed based on not only the terminal voltage but also battery internal electrochemical states, i.e., the electrode surface concentration, the electrolyte concentration, and the side reaction overpotential. The algorithm is validated by simulations and experiments under a dynamic load profile, and the dominating constraints in charging and discharging as well as the influence of predictive time horizons on the available battery power are analyzed, providing important information for further researches. Furthermore, the computational speed of the proposed iterative algorithm is improved with the integration of Gaussian process regression by up to 50%. A comparative study with a state-of-the-art equivalent circuit model-based approach highlights the significant benefits of the proposed electrochemical model-based algorithm in operation safety enhancement and battery performance improvement.
Keywords: Lithium-ion; Battery; Electrochemical model; State of power; Gaussian process regression; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013933
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013933
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118114
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().