EconPapers    
Economics at your fingertips  
 

Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems

Manyun Huang, Zhinong Wei and Yuzhang Lin

Applied Energy, 2022, vol. 306, issue PB, No S0306261921013982

Abstract: To accommodate a higher penetration of distributed energy resources, distribution systems are moving toward hybrid AC/DC configurations for secure and economic operation. In this regard, this paper proposes a forecasting-aided state estimator (FASE) for hybrid AC/DC distribution systems to obtain accurate estimates for online security monitoring and control. The proposed FASE is designed in a distributed framework, with decomposition into several subproblems and solution by a constrained ensemble Kalman filter algorithm. In the proposed methodology, a deep neural network-based state forecasting model is developed to imitate the complex temporal and spatial relationship between system states, avoiding the state transition model built by unfounded explicit formulations. Furthermore, smart meter data is integrated by deep regression learning to obtain power injections of consumers and address the system observability issue. Extensive comparisons with two alternatives are carried out on a sample 33-node hybrid AC/DC distribution system to show the effectiveness and benefits of the proposed FASE, and on a larger 106-node hybrid AC/DC distribution system to demonstrate scalability.

Keywords: Forecasting-aided state estimation; Deep learning ensemble Kalman filter; Hybrid AC/DC distribution systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013982

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118119

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013982