Deep neural network battery life and voltage prediction by using data of one cycle only
Chia-Wei Hsu,
Rui Xiong,
Nan-Yow Chen,
Ju Li and
Nien-Ti Tsou
Applied Energy, 2022, vol. 306, issue PB, No S0306261921014112
Abstract:
Rechargeable batteries, such as LiFePO4/graphite cells, age differently by variability in manufacturing, charging (energy inflow) policy, temperature, discharging conditions, etc. Great economic and environmental value can be extracted if we can predict how a battery ages and ascertain its current state of health and residual useful life, based on just a few cycles of testing. Here, by developing novel-architecture deep neural networks with a special convolutional training strategy and taking advantage of recently published battery cycling data, we show that one can predict the residual life of a battery to a mean absolute percentage error of 6.46%, using only one cycle of testing. The cycle-by-cycle profiles, such as discharge voltage, capacity, and power curves of any given cycle, of used batteries with unknown age can also be accurately predicted for the first time. Moreover, our models can extract data-driven features from the data which were much more influential on the predicted properties than human-picked features. This work has shown that single cycle data contains a sufficient amount of information to predict essential battery properties with high accuracy. It is expected to provide tremendous economic and environmental benefits since reuse and recycling of batteries can be better planned and less lithium-ion batteries end up in landfills.
Keywords: Deep neural network; LiFePO4/graphite cells; End-of-life; Remaining useful life; Data-driven features (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014112
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118134
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().