Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance
Reza Fachrizal,
Mahmoud Shepero,
Magnus Åberg and
Joakim Munkhammar
Applied Energy, 2022, vol. 307, issue C, No S030626192101415X
Abstract:
The integration of photovoltaic (PV) systems and electric vehicles (EVs) in the built environment, including at workplaces, has increased significantly in the recent decade and has posed new technical challenges for the power system, such as increased peak loads and component overloading. Several studies show that improved matching between PV generation and EV load through both optimal sizing and operation of PV-EV systems can minimize these challenges. This paper presents an optimal PV-EV sizing framework for workplace solar powered charging stations considering load matching performances. The proposed optimal sizing framework in this study uses a novel score, called self-consumption-sufficiency balance (SCSB), which conveys the balance between self-consumption (SC) and self-sufficiency (SS), based on a similar principle as the F1-score in machine learning. A high SCSB score implies that the system is close to being self-sufficient without exporting or curtailing a large share of local production. The results show that the SCSB performance tends to be higher with a larger combined PV-EV size. In addition to presenting PV-EV optimal sizing at the workplace charging station, this study also assesses a potential SC and SS enhancement with optimal operation through smart charging schemes. The results show that smart charging schemes can significantly improve the load matching performances by up to 42.6 and 40.8 percentage points for SC and SS, respectively. The smart charging scheme will also shift the combined optimal PV-EV sizes. Due to its simplicity and universality, the optimal sizing based on SCSB score proposed in this study can be a benchmark for future studies on optimal sizing of PV-EV system, or distributed generation-load in general.
Keywords: Photovoltaic systems; Electric vehicle charging; Workplace charging station; Optimal sizing; Smart charging; PV self-consumption (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192101415X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s030626192101415x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118139
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().