Understanding hydrogen sulfide impact on a portable, commercial, propane-powered solid-oxide fuel cell
Huidong Dai and
R.S. Besser
Applied Energy, 2022, vol. 307, issue C, No S0306261921014367
Abstract:
A portable commercial solid-oxide fuel cell that consisted of 56 stacked cells and used an indirect internal reforming strategy with a rhodium catalyst on an yttria-stabilized zirconia structure for its reformer and a nickel anode on an yttria-stabilized zirconia structure electrolyte was tested with propane fuel intentionally blended with 0 to 15 ppmv H2S. The voltages of cell pairs and stack were recorded during 7-h poison and recovery tests. Results indicated that with higher H2S concentrations, the rate of stack voltage decrease could vary from 181.4 mV/h at 3 ppmv to 432.0 mV/h at 15 ppmv. The voltage losses of individual cell pairs showed a consistent trend as well. Results from recovery tests indicated that a longer recovery time may be necessary at higher H2S concentration. Electrochemical impedance spectroscopy was employed to better understand the role of varying phenomena within the solid-oxide fuel cell. An equivalent circuit model was constructed to fit electrochemical impedance spectral data that was taken at the system level. Effects of individual components within the system (fuel cell, battery, and DC/DC converter), determined by using electrochemical impedance spectra, were then used to deduce the behaviour of the SOFC. A clear charge transfer resistance increase was observed due to H2S poisoning, consistent with the blocking of active sites on the catalyst in the anode layer. The effect was found to be completely reversible by a period of operation with sulfide-free fuel.
Keywords: Solid oxide fuel cell (SOFC); Voltage loss; Partial oxidation; Hydrogen sulfide; Electrochemical impedance spectroscopy; Equivalent circuit model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014367
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014367
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118163
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().