Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration
Manhee Byun,
Dongjun Lim,
Boreum Lee,
Ayeon Kim,
In-Beum Lee,
Boris Brigljević and
Hankwon Lim
Applied Energy, 2022, vol. 307, issue C, No S0306261921014549
Abstract:
The well-established Haber-Bosch (HB) process (industrial ammonia production) is a significant contributor to the world’s carbon emissions as it is a major consumer of natural gas as well as being energy-intensive in general. This work addresses the challenge of decarbonizing the HB process in a novel way as it, for the first time, presents a conceptual process integration with a supercritical CO2 Allam power cycle, therefore transforming gaseous CO2 emissions into a valuable side product in a form of liquid CO2. Detailed process design and flowsheet simulation using Aspen Plus ® was used as a basis for scale-up and techno-economic assessment of two cases (electrical grid dependent and independent). The results indicated that using this process design NH3 production reaches profitability at scales larger than 2 ton h−1 to 5.4 ton h−1 and at current global NH3 prices, the cost of manufacturing decrease, due to scale-up stabilizes at ∼ 30 ton h−1. Finally, this novel process integration achieves a significant reduction in gaseous CO2 emissions (compared to conventional HB process) of 68 % to 96 %, which indicates great potential for economically feasible green NH3.
Keywords: Ammonia; Haber-Bosch decarbonization; Supercritical CO2; Process integration; Process simulation; Techno-economic assessment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014549
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118183
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().