EconPapers    
Economics at your fingertips  
 

Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration

Manhee Byun, Dongjun Lim, Boreum Lee, Ayeon Kim, In-Beum Lee, Boris Brigljević and Hankwon Lim

Applied Energy, 2022, vol. 307, issue C, No S0306261921014549

Abstract: The well-established Haber-Bosch (HB) process (industrial ammonia production) is a significant contributor to the world’s carbon emissions as it is a major consumer of natural gas as well as being energy-intensive in general. This work addresses the challenge of decarbonizing the HB process in a novel way as it, for the first time, presents a conceptual process integration with a supercritical CO2 Allam power cycle, therefore transforming gaseous CO2 emissions into a valuable side product in a form of liquid CO2. Detailed process design and flowsheet simulation using Aspen Plus ® was used as a basis for scale-up and techno-economic assessment of two cases (electrical grid dependent and independent). The results indicated that using this process design NH3 production reaches profitability at scales larger than 2 ton h−1 to 5.4 ton h−1 and at current global NH3 prices, the cost of manufacturing decrease, due to scale-up stabilizes at ∼ 30 ton h−1. Finally, this novel process integration achieves a significant reduction in gaseous CO2 emissions (compared to conventional HB process) of 68 % to 96 %, which indicates great potential for economically feasible green NH3.

Keywords: Ammonia; Haber-Bosch decarbonization; Supercritical CO2; Process integration; Process simulation; Techno-economic assessment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014549
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014549

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118183

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014549