EconPapers    
Economics at your fingertips  
 

Managing the techno-economic impacts of partial string failure in multistring energy storage systems

Sarmad Hanif, M.J.E. Alam, Vanshika Fotedar, Alasdair Crawford, Charlie Vartanian and Vilayanur Viswanathan

Applied Energy, 2022, vol. 307, issue C, No S0306261921014653

Abstract: The role of energy storage systems (ESSs) is becoming increasingly important for today’s electric power systems. Unavailability of an ESS assigned to critical grid services may cause unwanted disruption of those services and hence, may have a significant techno-economic impact. Like any physical equipment, an ESS is vulnerable to various types of faults. Failure of one or more strings in a multistring ESS does not have to be the cause of shutting down the entire ESS. It can still operate with a partial number of strings and continue providing critical services to the grid, if there are no reliability or safety issues and is acceptable under applicable standards. However, it is important to make sure that the control strategies are adaptable to the changes in ESS capacity caused by failed strings. Also, depending on the previous operation and type of failure, the reallocation of duty cycle burden among available strings could be non-uniform. These complexities suggest that mitigation of the impact of partial failure in multistring ESSs is not trivial and needs careful consideration. This is the topic of this paper. The proposed work investigates the impact of partial failure of a large multistring ESS on the assigned service and develops strategies to adjust the ESS control duty cycles for reducing such impacts. In doing so, the paper proposes a novel two-stage framework that plans for the multistring failure using robust optimization theory and then adjusts in real-time using a rule-based algorithm, based on the real-time information on the power availability of the string. Illustrations provided in this work are based on frequency regulation use-case, which is a common application for many utility-scale ESSs. A 750 kilowatt (kW)/1500 kilowatt-hour (kWh) 3-string ESS is used for the demonstration in this work and the efficacy of the proposed method is demonstrated and compared against methods that do not incorporate string failure in their strategy. In particular, we show that revenue loss of 93% can be incurred when partial string failure is not included in operation and planning. These losses in revenue are reduced by 60% with the proposed method.

Keywords: Multistring energy storage systems; Partial string failure; Two-stage decision making algorithm; Techno-economic impact (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014653
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014653

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118196

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014653