Building performance optimization for university dormitory through integration of digital gene map into multi-objective genetic algorithm
Fang'ai Chi and
Ying Xu
Applied Energy, 2022, vol. 307, issue C, No S0306261921014781
Abstract:
College students spent most of their time in dormitory buildings, which account for a large proportion of the overall electricity use in university. Building performance is determined by its genes (i.e., building component characters), which can be optimized in the design stage. However, a building is comprised of many components, of which some are contradictory to each other in the building performance optimization process. In doing so, a digital gene map was proposed for the university dormitory, characterized by the binary code strings. Based on the digital gene map, the building elements can be parameterized to create some dynamic variables, to facilitate the multi-objective genetic algorithm. Via the multi-objective genetic algorithm and the data statistics tool of Design Explorer in this work, the “Pareto front” solutions can be obtained to optimize the decision-makings in the dormitory building design. For evaluations of the building performance improvement potentials for various types of study rooms with optimized solutions, we conducted the comparison studies in this work. Through comparison studies, we found that the optimized solutions from the multi-objective genetic algorithm, for the nine types of study rooms, have better compromised building performances. The methodology proposed in this work can be applicable for different types of university dormitories under various climate conditions, due to the dormitory buildings have a similar gene pool and chromosomal structure.
Keywords: Multi-objective genetic algorithm; Digital gene map; Visual comfort; Thermal comfort; Energy consumption (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014781
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118211
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().