EconPapers    
Economics at your fingertips  
 

Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints

Pier Giuseppe Anselma

Applied Energy, 2022, vol. 307, issue C, No S0306261921015105

Abstract: Advanced computer-aided engineering tools are urgently needed to foster the development of electrified road vehicles that would enable abating fuel consumption and pollutant emissions of the transport sector. Concerning plug-in hybrid electric vehicles (HEVs), implementing an energy management strategy that can rapidly estimate near-optimal powertrain control trajectories while effectively dealing with broaded battery state-of-charge (SOC) window utilization and smooth HEV driving requirements still needs extensive development. To overcome the highlighted drawback, this paper introduces a formulation of the slope-weighted energy-based rapid control analysis (SERCA) algorithm which can rapidly identify near-optimal plug-in HEV control trajectories while complying with SOC boundaries and limiting the number of thermal engine activations and gear shifts. The HEV numerical model is introduced first, followed by formulating the optimal plug-in HEV control problem with smooth driving constraints and describing the dedicated SERCA based control approach. A performed case study demonstrates that SERCA can identify smooth driving constrained near-optimal HEV control trajectories for a 1.5 hours-long real-world driving mission within two minutes on a desktop computer, while a global optimal control approach such as dynamic programming (DP) is found to require more than 10 hours to perform the same task. On the other hand, compared with the global optimal reference provided by DP, the increase in estimated plug-in HEV operative cost in terms of fuel and electrical energy consumption associated to SERCA is always contained within few percentage points. The proposed methodology can accelerate HEV powertrain design and on-board supervisory controller development procedures.

Keywords: Drivability; Electrified powertrain; Fuel economy evaluation; Hybrid electric vehicle (HEV); Optimal control; Plug-in HEV; Rapid control; Real-world driving (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015105
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015105

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118247

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015105