EconPapers    
Economics at your fingertips  
 

Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics

Peng Li, Shuang Li, Hao Yu, Jinyue Yan, Haoran Ji, Jianzhong Wu and Chengshan Wang

Applied Energy, 2022, vol. 307, issue C, No S0306261921015300

Abstract: Effective simulation methods are becoming critically essential for the analysis of integrated energy systems (IESs) to reveal the interactions of multiple energy carriers. The incorporation of various energy technologies and numerous controllers make the IES a heterogeneous system, which poses new challenges to simulation methods. This paper focuses on the simulation of an IES with hybrid continuous-discrete properties and heterogeneous characteristics. First, a modified third-order quantized state system (MQSS3) method is proposed for the simulation of district heating systems (DHSs), in which quantized state system (QSS) and time-discretized integration are integrated to efficiently manage numerous discrete control actions. Second, an event-driven framework is established to integrate MQSS3 into the simulation of the electricity-heat integrated energy system (EH-IES). This framework enables the adoption of the most suitable models and algorithms for different systems to accommodate the heterogeneous properties of an IES. Case studies of an EH-IES with maximum 80% PV penetration and 210 buildings demonstrate that the dynamic interactions between the DHS and the power distribution network are accurately illustrated by the proposed simulation methods, in which MQSS3 indicates the highest simulation efficiency. It is also demonstrated in the simulation results that the flexibility from DHS can be utilized as demand-side resource to support the operation of power distribution network in aspects such as consuming the surplus PV generations.

Keywords: Dynamic simulation; Integrated energy system (IES); Continuous-discrete hybrid system; Quantized state system (QSS); Event-driven simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015300

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118268

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015300