Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia
Xin Lu,
Jing Qiu,
Gang Lei and
Jianguo Zhu
Applied Energy, 2022, vol. 308, issue C, No S0306261921015555
Abstract:
Electricity prices in spot markets are volatile and can be affected by various factors, such as generation and demand, system contingencies, local weather patterns, bidding strategies of market participants, and uncertain renewable energy outputs. Because of these factors, electricity price forecasting is challenging. This paper proposes a scenario modeling approach to improve forecasting accuracy, conditioning time series generative adversarial networks on external factors. After data pre-processing and condition selection, a conditional TSGAN or CTSGAN is designed to forecast electricity prices. Wasserstein Distance, weights limitation, and RMSProp optimizer are used to ensure that the CTGAN training process is stable. By changing the dimensionality of random noise input, the point forecasting model can be transformed into a probabilistic forecasting model. For electricity price point forecasting, the proposed CTSGAN model has better accuracy and has better generalization ability than the TSGAN and other deep learning methods. For probabilistic forecasting, the proposed CTSGAN model can significantly improve the continuously ranked probability score and Winkler score. The effectiveness and superiority of the proposed CTSGAN forecasting model are verified by case studies.
Keywords: Generative adversarial networks; Point forecasting; Probabilistic forecasting; Electricity Price; Conditions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015555
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118296
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().