Development of an integrated bi-level model for China’s multi-regional energy system planning under uncertainty
J.W. Gong,
Y.P. Li,
J. Lv,
G.H. Huang,
C. Suo and
P.P. Gao
Applied Energy, 2022, vol. 308, issue C, No S0306261921015580
Abstract:
Climate change mitigation and renewable resources utilization are becoming particularly urgent for energy system management. In this study, a bi-level joint-probabilistic programming (BJPP) method is developed for planning multi-regional energy system under different mitigation policies and uncertainties. BJPP can handle leader–follower issues in decision-making process as well as examine the risk of violating joint-probabilistic constraints. Based on the BJPP method, a China’s multi-regional energy system (named as BJPP_CMES) model is formulated to provide optimal scheme for energy system planning of China over a long-term horizon (2021–2050) by synergistically minimizing carbon dioxide (CO2) emission and system cost. A series of scenarios associated with different carbon capture and storage (CCS) levels and violation risks of energy-demand constraints are examined. Results reveal that: (i) the share of non-fossil energy in China’s energy supply would keep increasing in 2021–2050, and the highest growth of the renewable supply would occur in Ningxia (rising 47.7%); (ii) Sichuan, Inner Mongolia, and Gansu would be the top three suppliers of renewable electricity; (iii) the CO2 emission of China would reach a peak of [44.3, 54.8] billion tonnes during the period of 2026–2030; Shandong, Inner Mongolia, and Shanxi would be main contributors of CO2 emission in the future; (iv) compared with the single-level model, the CO2 emission from the BJPP_CMES model would reduce by [2.7, 5.7]%; (v) among developed regions, the individual probability level of Jiangsu-Zhejiang-Shanghai is the most significant parameter for both CO2 emission and system cost. The findings are helpful for decision makers to optimize multi-regional energy system (MES) with a low-carbon and cost-effective manner, as well as to provide useful information for renewable energy utilization and regional sustainable development.
Keywords: Bi-level programing; Emission reduction; Joint-probabilistic programming; Multi-regional energy system; Uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015580
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015580
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118299
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().