A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems
Yang Li,
Meng Zhang and
Chen Chen
Applied Energy, 2022, vol. 308, issue C, No S0306261921015944
Abstract:
Facing the difficulty of expensive and trivial data collection and annotation, how to make a deep learning-based short-term voltage stability assessment (STVSA) model work well on a small training dataset is a challenging and urgent problem. Although a big enough dataset can be directly generated by contingency simulation, this data generation process is usually cumbersome and inefficient; while data augmentation provides a low-cost and efficient way to artificially inflate the representative and diversified training datasets with label preserving transformations. In this respect, this paper proposes a novel deep-learning intelligent system incorporating data augmentation for STVSA of power systems. First, due to the unavailability of reliable quantitative criteria to judge the stability status for a specific power system, semi-supervised cluster learning is leveraged to obtain labeled samples in an original small dataset. Second, to make deep learning applicable to the small dataset, conditional least squares generative adversarial networks (LSGAN)-based data augmentation is introduced to expand the original dataset via artificially creating additional valid samples. Third, to extract temporal dependencies from the post-disturbance dynamic trajectories of a system, a bi-directional gated recurrent unit with attention mechanism based assessment model is established, which bi-directionally learns the significant time dependencies and automatically allocates attention weights. The test results demonstrate the presented approach manages to achieve better accuracy and a faster response time with original small datasets. Besides classification accuracy, this work employs statistical measures to comprehensively examine the performance of the proposal.
Keywords: Short-term voltage stability; Deep learning; Generative adversarial networks; Data augmentation; Bi-directional gated recurrent unit; Attention mechanism (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015944
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015944
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118347
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().