Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks
Antonio García,
Javier Monsalve-Serrano,
Rafael Lago Sari and
Shashwat Tripathi
Applied Energy, 2022, vol. 308, issue C, No S0306261921016007
Abstract:
To control the global warming by ensuring the greenhouse gas emissions reduction of the automotive sector, the standards or norms are getting ever stricter globally, specifically in the past few years. In view of this, great emphasis is currently being given to the shift towards electric vehicles. However, it is very important to critically evaluate the overall life cycle of different powertrain technologies. In this study, such analysis has been carried out for the bus rapid transit networks in the 4 largest cities of Spain: Madrid, Barcelona, Valencia and Seville. Ten different lines were selected from each city and their driving-cycles were designed by extracting real time data from GPS used for simulating 3 different bus powertrains (diesel, hybrid and electric) for real-life results of the vehicles on each route. A life cycle analysis of the different bus configurations was done considering a wide perspective from manufacturing, use, maintenance to end-of-life stages, to compare the CO₂ footprints of the 3 evaluated powertrains using the database of the software GREET. The CO₂ footprints of the electric bus was also estimated for the years 2030 and 2050, using the predictions for cleaner electricity grids for future perspective. Compared to the standard diesel bus results, the overall results for hybrid and electric bus show 40% decrement and 30% increment of CO₂ well-to-tank emissions, respectively, 40% and 60% decrement of CO₂ life cycle emissions; 30% increment and 60% decrement of the buses’ driving range and, 2.5% and 30% addition in the life cycle cost.
Keywords: Bus Rapid Transit; Diesel; Hybrid; Electric; Carbon footprint; Life Cycle Analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016007
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118354
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().