EconPapers    
Economics at your fingertips  
 

Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives

Dominik Keiner, Orlando Salcedo-Puerto, Ekaterina Immonen, Wilfried G.J.H.M. van Sark, Yoosuf Nizam, Fathmath Shadiya, Justine Duval, Timur Delahaye, Ashish Gulagi and Christian Breyer

Applied Energy, 2022, vol. 308, issue C, No S0306261921016056

Abstract: Low-lying coastal areas and archipelago countries are particularly threatened by the impacts of climate change. Concurrently, many island states still rely on extensive use of imported fossil fuels, above all diesel for electricity generation, in addition to hydrocarbon-based fuels to supply aviation and marine transportation. Land area is usually scarce and conventional renewable energy solutions cannot be deployed in a sufficient way. This research highlights the possibility of floating offshore technologies being able to fulfil the task of replacing fossil fuels with renewable energy solutions in challenging topographical areas. On the case of the Maldives, floating offshore solar photovoltaics, wave power and offshore wind are modelled on a full hourly resolution in two different scenarios to deal with the need of transportation fuels: By importing the necessary, carbon neutral synthetic e-fuels from the world market, or by setting up local production capacities for e-fuels. Presented results show that a fully renewable energy system is technically feasible in 2030 with a relative cost per final energy of 120.3 €/MWh and 132.1 €/MWh, respectively, for the two scenarios in comparison to 105.7 €/MWh of the reference scenario in 2017. By 2050, cost per final energy can be reduced to 77.6 €/MWh and 92.6 €/MWh, respectively. It is concluded that floating solar photovoltaics and wave energy converters will play an important role in defossilisation of islands and countries with restricted land area.

Keywords: 100% renewable energy; Energy transition; Solar photovoltaics; Wave energy converter; Floating photovoltaic (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016056
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016056

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118360

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016056