EconPapers    
Economics at your fingertips  
 

Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game

Yang Li, Bin Wang, Zhen Yang, Jiazheng Li and Chen Chen

Applied Energy, 2022, vol. 308, issue C, No S0306261921016299

Abstract: An operating entity utilizing community-integrated energy systems with a large number of small-scale distributed energy sources can easily trade with existing distribution markets. To solve the energy management and pricing problem of multi-community integrated energy systems (MCIESs) with multi-energy interaction, this study investigated a hierarchical stochastic optimal scheduling method for uncertain environments. To handle multiple uncertainties, a Wasserstein generative adversarial network with a gradient penalty was used to generate renewable scenarios, and the Kmeans++ clustering algorithm was employed to generate typical scenarios. A Stackelberg-based hierarchical stochastic schedule with an integrated demand response was constructed, where the MCIES operator acted as the leader pursuing the maximum net profit by setting energy prices, while the building users were followers who adjusted their energy consumption plans to minimize their total costs. Finally, a distributed iterative solution method based on a metaheuristic was designed. The effectiveness of the proposed method was verified using practical examples.

Keywords: Community-integrated energy systems; Stochastic scheduling; Generative adversarial network; Integrated demand response; Stackelberg game; Renewable generation uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016299

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118392

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016299