EconPapers    
Economics at your fingertips  
 

Probabilistic electric load forecasting through Bayesian Mixture Density Networks

Alessandro Brusaferri, Matteo Matteucci, Stefano Spinelli and Andrea Vitali

Applied Energy, 2022, vol. 309, issue C, No S0306261921015907

Abstract: This work presents a novel approach to address a challenging and still unsolved problem of neural network based load forecasting systems, that despite the significant results reached in terms of prediction error reduction, still lack suitable indications regarding sample-wise trustworthiness of their predictions. The present approach is framed on Bayesian Mixture Density Networks, enhancing the mapping capabilities of neural networks by integrated predictive distributions, and encompassing both aleatoric and epistemic uncertainty sources. An end-to-end training method is developed, aimed to discover the latent functional relation to conditioning variables, characterize the inherent load stochasticity, and convey parameters uncertainty in a unique framework. To achieve reliable and computationally scalable estimators, both Mean Field variational inference and deep ensembles are integrated. Experiments have been performed on short-term load forecasting tasks at both regional and fine-grained household scale, to investigate heterogeneous operating conditions. Different architectural configurations are compared, showing by Continuous Ranked Probability Score based tests that significant performance improvements are achieved by integrating flexible aleatoric uncertainty patterns and multi-modalities in the parameters posterior space.

Keywords: Neural networks; Bayesian deep learning; Mixture density; Probabilistic forecasting; Electric load (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015907
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921015907

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118341

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921015907