Decoupling wind–wave–wake interactions in a fixed-bottom offshore wind turbine
Ondřej Ferčák,
Juliaan Bossuyt,
Naseem Ali and
Raúl Bayoán Cal
Applied Energy, 2022, vol. 309, issue C, No S0306261921016032
Abstract:
The interest and benefits of offshore wind energy have also brought along legitimate challenges. In the golden age of renewables, offshore wind-energy holds the most potential for growth, but the burgeoning benefits of offshore energy are also entangled in dynamics not fully understood, such as the dynamic coupling of the atmospheric boundary layer, the wind-turbine generated wake, and the surface waves. This study establishes the first experimental turbulent-interaction between the traditionally distinct fields of airflow-dynamics above the air–sea interface and the characterization of wind-turbine wakes. The study details a non-trivial experimental setup combining a wave tank, wind tunnel, and scaled fixed-bottom wind turbine. Particle image velocimetry (PIV) was performed on three successive image planes to visualize wind–wake, wind–wave, and wave–wake interaction far downstream of the turbine. The wave phase-dependent dynamics of the turbine wake on the passing ocean-wave profile and location are outlined. The velocity and stress profiles showed a horizontal wake-pumping motion along with vertical wake-lifting of the offshore turbulent wake. The data were decomposed into incremental wave-phases revealing localized and predictable velocity maxima, stress maxima, and wake modulation that is normally obscured by a time-averaged mean. The results quantified wake pumping and meandering, as well as the Reynolds stress and wave-induced phase-averaged fluctuations. There is a phase-dependent oscillation in both the horizontal (streamwise) direction, as well as a vertical displacement of the wake. The shear stress and advection terms show this imbalance along the vertical direction of the turbine. The results illustrate a more complete picture of offshore wind-energy dynamics, which have implications for insidious mechanical issues, design optimization and/or control strategies.
Keywords: Turbulence; Particle image velocimetry; Offshore wind energy; Offshore wind farm; Wake recovery; Wind–wave–wake interaction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016032
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118358
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().