Forecasting of high-resolution electricity consumption with stochastic climatic covariates via a functional time series approach
Chih-Hao Chang,
Zih-Bing Chen and
Shih-Feng Huang
Applied Energy, 2022, vol. 309, issue C, No S0306261921016500
Abstract:
This paper proposes a functional autoregressive model with stochastic functional covariates, denoted by FARSX, to depict high-resolution data dynamics. An easy-to-implement procedure is proposed to estimate the model parameters under the frameworks of an expansion of multiresolution B-spline basis functions and an adaptive lasso criterion with a two-layer sparsity assumption. We derive the consistency of the proposed estimators under mild conditions. The effectiveness of the estimation procedure allows us to further construct a FARSX model with time-varying parameters under a rolling window framework to capture stochastic effects of functional covariates timely and enhance the prediction accuracy. In the empirical study, the FARSX method with time-varying parameters is applied to the high-resolution electricity consumption and intraday temperatures in Belgium and the U.S. separately. The investigation results reveal that the FARSX model with time-varying parameters provides more reliable day-ahead predictions than several existing models.
Keywords: Energy demand; Functional time series; High-resolution data; Stochastic covariate; Time-varying coefficients (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016500
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118418
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().