A data-driven approach for microgrid distributed generation planning under uncertainties
Mingjia Yin,
Kang Li and
James Yu
Applied Energy, 2022, vol. 309, issue C, No S0306261921016561
Abstract:
The increasing demand for power system decarbonization and resilience raises the necessity of incorporating the renewable distributed generation (DG) into the microgrid planning. The complexity of the microgrid renewable DG planning largely roots from the intermittent wind and solar energy and load variations throughout the planning period. This paper proposes a novel two-stage data-driven adaptive robust distributed generation planning (DDARDGP) framework considering both grid-connected and islanded modes of microgrids, wherein the overall system cost is minimized. By leveraging the spatio-temporal property of historical weather and grid information, a compact uncertainty set is developed based on a data-driven Bayesian nonparametric approach. The problem is further solved by a modified column and constraint generation (CC&G) algorithm. In the study, the effectiveness of the proposed framework is demonstrated using a modified IEEE 33-bus test system. The case study considers the optimal generation sizing, allocation and mixtures. The simulation results confirm that the proposed data-driven uncertainty set adapts well to the increase of data dimensions and solves the over-conservatism issue, leading to 34.14% reduction in uncertainty estimation compared with the traditional budget uncertainty set. Accordingly, the total cost can achieve a $23,185 reduction under the proposed DDARDGP framework.
Keywords: Distributed generation planning; Data-driven uncertainty set; Adaptive robust optimization; Dirichlet process mixture model; Microgrid (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016561
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118429
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().