Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production
Amir Ebrahimi-Moghadam and
Mahmood Farzaneh-Gord
Applied Energy, 2022, vol. 309, issue C, No S0306261921016780
Abstract:
In this study, a new configuration of a multi-generation energy system is proposed based on waste heat recovery from a regenerative gas turbine cycle (as the driver cycle) for running a district heating heat exchanger, a Rankine cycle, an ejector refrigeration cycle, and a proton exchange membrane electrolyzer cycle. In the first phase of the study, a thorough parametric model of the system is developed in EES software based on the eco-exergy and enviro-exergy analyses. The second phase is focused on the optimal operation of the system utilizing a robust multi-criteria optimization in Matlab software. Results of the parametric study showed that: (i) the share of fuel, capital, and environmental penalty costs rates in the system's total cost rate are respectively 46.95%, 29.38%, and 23.67%, at the optimal conditions. (ii) although the design variables of the bottoming cycles are not effective on the amount of pollutants, they have a significant effect on the enviro-exergy assessment criterion. The optimal system productions are included 21.42 MW of power, 26.81 MW of heat, 8.89 MW of cold, and 11.96 kg/h of hydrogen. The energy and exergy efficiencies are found to be 89.75% 35.21%, respectively. In such conditions, the payback period is approximately 5 years, demonstrating the economic feasibility of the proposal. Recovering the waste heat of conventional cycles to develop an energy production hub with minimal energy loss is one of the most important challenges in the energy matrix and relying on the results of the present study, it can be concluded that the proposed system has done this task well.
Keywords: Multi-generation district energy hub; Power to gas (P2G); Hydrogen production; Eco-exergy analysis; Enviro-exergy analysis; Multi-criteria optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016780
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016780
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118453
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().