Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach
Odysseas Alexandros Katsikogiannis,
Hesan Ziar and
Olindo Isabella
Applied Energy, 2022, vol. 309, issue C, No S0306261921016986
Abstract:
To safeguard future renewable energy and food supply the use of agrophotovoltaic (APV) systems was investigated, which enable simultaneous production under the same piece of land. As conventional photovoltaic (PV) array topologies lead to unfavourable conditions for crop growth, the application of APV is limited to areas with high solar insolation. By optimizing the APV array’s design, compatibility with various climates and crop species can be attained. Therefore, the aim of this research was to establish a multi-scale modelling approach and determine the optimal topology for a medium-to-large-scale fixed bifacial APV array. Three main topologies were analyzed under the climate of Boston, USA: S-N facing, E-W wings, and E-W vertical. For each topology, respectively, specific yield was amplified by 39%, 18%, and 13% in comparison to a conventional monofacial ground mounted PV array. E-W vertical is more appropriate for permanent crop species, while S-N facing necessitates the cultivation of shade tolerant crops during summer as electricity generation is prioritized. The E-W wings APV topology combines the best of both; light is distributed homogeneously, and crops are effectively shaded at noon. To promote the growth rate of blueberries under shade, customized bifacial modules were integrated (arranged as the E-W wings). Land productivity enhanced by 50%, whereas electrical AC yield reduced by 33% relative to the conventional and separate production. Through this holistic approach, it is possible to achieve a comprehensive understanding of the limitations and potential synergies associated with the dual use of land; ultimately, encouraging the transition of the agricultural sector into sustainability.
Keywords: Agrivoltaics; Agrophotovoltaic design; Bifacial solar photovoltaic optimization; Radiance/Daysim simulation; Multi-scale sensitivity analysis; Land equivalent ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016986
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118475
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().