Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels
Liang Chen,
Daxiang Deng,
Qixian Ma,
Yingxue Yao and
Xinhai Xu
Applied Energy, 2022, vol. 309, issue C, No S0306261921017013
Abstract:
Efficient cooling is critical to reduce cell temperatures of high concentration photovoltaic (HCPV) cells to avoid the output electrical performance degradation and lifetime reduction. In this study, we develop a novel type of microchannel heat sink (MHS) with serpentine reentrant microchannels (SRM) for efficient cooling of HCPV cells. They feature serpentine flow passages with Ω-shaped cross-sectional configurations, which contribute to promote fluid mixing and disrupt the normal development of thermal boundary layers. Thus they are able to provide excellent heat transfer characteristics and highly efficient cooling performance. By the comparison of a fin heat sink, both numerical and outdoor experimental studies were comprehensively conducted to explore the enhancement feasibility of thermal and electrical performance of HCPV cells. Results showed that the SRM reduced the cell temperatures and enhanced the temperature uniformity of HCPV cell module considerably, i.e., it presented cell temperatures of 25-31℃, much smaller than that of 45-63℃ of the fin heat sink. The temperature differences of HCPV cell modules were reduced to be less than 4.4℃. Besides, the output power increased by as high as 115%, and the electrical efficiency increased to 15–20% for the HCPV cell module with serpentine reentrant microchannels. Besides, the HCPV cell module with SRM was also found to induce smaller average cell temperatures and better electrical performance than a module with parallel reentrant microchannels (PRM). Moreover, the effects of flow rate and concentration ratio on the performance of HCPV cells with SRM were also assessed.
Keywords: High concentration photovoltaic cell; Microchannels heat sink; Serpentine reentrant microchannels; Thermal performance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921017013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921017013
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118478
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().