EconPapers    
Economics at your fingertips  
 

A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation

Yanqiang Hu, Xiaoli Wang, Yechen Qin, Zhihao Li, Chenfei Wang and Heng Wu

Applied Energy, 2022, vol. 309, issue C, No S0306261921017219

Abstract: Existing energy harvesters are mostly designed into the electromagnetic shock absorbers to replace the original dampers in automotive suspension systems, possibly deteriorating sprung mass acceleration when the energy harvesters are in trouble. Therefore, this study proposed a hybrid generator based on the sliding-mode triboelectric nanogenerator (S-TENG) and electromagnetic generator (EMG) to harvest the suspension vibration energy without replacing the original damper and deteriorating sprung mass acceleration. First, the patterned polyimide (PI) films were prepared to solve the challenge of the poor durability of the S-TENG due to material wear. The results showed that the wear mass loss of PI film diminished with the decrease of pillar pitch, and the wear mass loss of P2 film was only 37% of that of the smooth one. Furthermore, whether the patterned surface could improve the electrical output of the S-TENG depended on the pattern parameters, which was a departure from the common view that any pattern could enhance triboelectrification. In this paper, P2 was the optimal textural parameter for improving the durability and electrical output of the S-TENG, which could provide a texture design reference for the S-TENG. Second, the hybrid generator charged a 4.7 μF capacitor to 18.05 V in 60 s, and the contribution ratio of charging voltage of the S-TENG component increased with extended charging time. Finally, the hybrid generator moved together with the original shock absorber without a noticeable impact on sprung mass acceleration, which can make the accelerometer self-powered at different random road excitations.

Keywords: Sliding-mode triboelectric nanogenerator; Durability; Patterned surface; Hybrid generator; Suspension vibration energy; Random road (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921017219
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921017219

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118506

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921017219