A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data
Zhiwen Chen,
Qiao Deng,
Hao Ren,
Zhengrun Zhao,
Tao Peng,
Chunhua Yang and
Weihua Gui
Applied Energy, 2022, vol. 310, issue C, No S0306261921016445
Abstract:
The energy consumption prediction of chillers plays a central role in the optimization of the energy-saving control of central air-conditioning in a high-rise building. Existing deep neural network energy consumption prediction methods hardly combine operating data with empirical knowledge. Therefore, a new energy consumption prediction method based on graph sampling aggregation (GraphSAGE) network by using empirical knowledge to construct association graphs is proposed (EK-GraphSAGE). This method first uses the empirical knowledge that analyzes the operating status of chillers and combines the operating data of chillers to construct an association graph. Then the operating data and the association graph are input into the GraphSAGE network to predict the energy consumption of chillers. At last, an on-site experiment is carried out on the cold source system in a real building. The results show that the proposed method can achieve better prediction results compared with the state-of-the-art methods.
Keywords: Energy consumption prediction; Deep neural network; Operating data; Empirical knowledge; Graph neural network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016445
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016445
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118410
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().