Convolutional neural networks for intra-hour solar forecasting based on sky image sequences
Cong Feng,
Jie Zhang,
Wenqi Zhang and
Bri-Mathias Hodge
Applied Energy, 2022, vol. 310, issue C, No S0306261921016639
Abstract:
Accurate and timely solar forecasts play an increasingly critical role in power systems. Compared to longer forecasting timescales, very short-term solar forecasting has lagged behind in both research and practice. In this paper, we propose deep convolutional neural networks (CNNs) to provide operational intra-hour (10-minute-ahead to 60-minute-ahead) solar forecasts. We develop two CNN structures inspired by a widely-used CNN architecture. The CNNs are tailored to our solar forecasting regression tasks and rely solely on sky image sequences. Case studies based on six years of data (over 150,000 data points) demonstrate that the best CNN model has forecast skill scores of 20%–39% over the naive persistence of cloudiness benchmark, even at these very short timescales. The CNNs also have consistently superior performance when compared to shallow machine learning models with meteorological predictors, where the improvement averages around 7%. The sensitivity analyses show that the sky image length, resolution, and weather conditions have impacts on the deep learning model accuracy. In our intra-hour problem with specific setups, two sky images with a 10-minute 128 × 128 resolution yield the most accurate forecasts. Current limitations, future work, and deployment challenges and solutions are also discussed.
Keywords: Deep learning; CNN; Solar forecasting; Sky image sequence; Computer vision (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016639
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118438
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().