A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls
Ge Shi,
Dike Tong,
Yinshui Xia,
Shengyao Jia,
Jian Chang,
Qing Li,
Xiudeng Wang,
Huakang Xia and
Yidie Ye
Applied Energy, 2022, vol. 310, issue C, No S0306261921017256
Abstract:
Wave vibration is a ubiquitous energy existing in our environment, but efficient vibration energy harvesting at ultra-low frequency and multi-directions is still a challenge. This paper proposes a piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves driven by a rotating rolling ball. The energy harvester is designed to float on the water's surface; it will be tilting vibration in the corresponding direction once driven by the wave from any direction. The energy harvester converts the vibration wave energy into electrical energy due to the basic characteristics of frequency up-conversion. The proposed harvester can efficiently scavenge not only ultra-low frequency but also multi-directional vibration wave energy. The energy harvester is modeled and designed. A simulation wave device is used to evaluate the proposed harvester's performances. Simulation and experimental results are in good agreement. The energy harvester can harvest energy from single-direction or multi-direction excitation. When the external frequency is 0.9 Hz, and the external load is 47KΩ, the power output of the whole energy harvester is 6.32mW, which shows great application prospects in the power supply of ocean buoys.
Keywords: Multi-directional; Vibration energy harvesting; Wave energy; Frequency up-conversion; Piezoelectric (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921017256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261921017256
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118511
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().