EconPapers    
Economics at your fingertips  
 

Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets

Yubin Wang, Wei Dong and Qiang Yang

Applied Energy, 2022, vol. 310, issue C, No S0306261922000174

Abstract: A multi-energy microgrid (MEMG) consisting of different forms of distributed generation, e.g., combined heat and power (CHP) units and renewable distributed energy resources (RDERs), is considered as a key technology for accommodating RDERs and for the introduction of multiple forms of energy sources into the electricity market due to the multi-energy complementarity and flexible operation modes. However, the MEMG is subject to source and demand uncertainties which are the primary obstacles to its market participation. The source and demand uncertainties will pose serious challenges to the management of the MEMG and incur the penalty cost to participate in the real-time market. To minimize the operational cost, a multi-stage optimal energy management system (EMS) for participating in the deregulated electricity market considering the cost of market participation and the additional cost (e.g. the purchasing natural gas cost and the depreciation cost of energy storage system) is proposed in this paper. The proposed EMS consists of forecasting stage, day-ahead scheduling stage and real-time dispatch stage. The long short-term memory (LSTM) is adopted for day-ahead data forecasting during the forecasting stage. In the day-ahead scheduling stage, the cost for participating in the day-ahead market (DM) is minimized based on the forecasted data. In the real-time dispatch stage, the cost for participating in the intraday balancing market (IBM) and the additional cost are minimized based on the rolling model predictive control (MPC) method. The proposed method is verified and compared with benchmark solutions. The numerical results demonstrate that the proposed solution can outperform the benchmark solutions and reduce the peak-to-average ratio of the total net-load of multiple MEMGs.

Keywords: Multi-energy; Deregulated electricity market; Energy management system; Source and demand uncertainties; Rolling model predictive control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922000174
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000174

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118528

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000174