Fuzzy-tree-constructed data-efficient modelling methodology for volumetric efficiency of dedicated hybrid engines
Ji Li,
Quan Zhou,
Huw Williams,
Pu Xu,
Hongming Xu and
Guoxiang Lu
Applied Energy, 2022, vol. 310, issue C, No S0306261922000228
Abstract:
The accurate characterization of volumetric efficiency is essential for modern combustion engines to achieve better performance, lower emissions, and reduced fuel consumption. To minimize experimental effort on sample collection and maintain high-precision volumetric efficiency characterization, this paper proposes a new methodology of fuzzy-tree-constructed data-efficient modelling to precisely quantify the air mass flow through the engine. Differing from conventional data-driven modelling, this methodology introduces a hierarchical fuzzy inference tree (HFIT) with three original topologies that accommodates simplicity by combining several low-dimensional fuzzy inference systems. Driven by two derivative-free optimization algorithms, a two-step tuning process is introduced to speed up the convergence process when traversing HFIT parameters. A Gaussian distributed resampling technique is developed to screen a small number of samples with diverse engine operations to maintain sample diversity. The experimental dataset is obtained from steady-state tests carried out in a BYD 1.5L gasoline engine specially made for a hybrid powertrain. The results demonstrate that the proposed fuzzy-tree-constructed data-efficient modelling methodology performs with superior learning efficiency on volumetric efficiency characterization than those of a fuzzy inference system, a neural network, or an adaptive neuro-fuzzy inference system. Even when dataset split ratio downs to 0.2, the relative mean absolute error can be restricted to 3.18% with the help of Gaussian distributed resampling technique.
Keywords: Data resampling; Data-efficient modelling; Dedicated hybrid engine; Hierarchical fuzzy inference tree; Volumetric efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922000228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118534
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().