Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models
Xinran Yu and
Semiha Ergan
Applied Energy, 2022, vol. 310, issue C, No S0306261922000605
Abstract:
With the increasing electricity demand driven by population growth and urbanization, the national power grids are exposed to massive pressure, which leads to potential electrical blackouts. Demand response (DR) programs, incentivize end-consumers to reduce their demand during certain periods (i.e., DR events), provide an alternative to the costlier path of constructing more power plants. To alleviate the risks of peak electrical demand that surpasses the supply capacity, it is of great importance to estimate the Power demand Shaving Capacity (PSC) of buildings proactively and accurately. However, the accuracy of PSC estimation at a large scale is held back due to the lack of detailed building/equipment information. This study proposed a machine learning based method to infer the DR performance of data-scarce buildings on an urban scale through leveraging an accurate prediction model developed to estimate the PSC of a smaller cohort of data-rich buildings. Specifically, we first developed a supervised learning model to accurately estimate the PSC of twenty-eight buildings using the state-of-the-art ensemble algorithm (i.e., XGBoost). This estimation model was built using data of detailed building and system information along with more than 200 historical DR events information across three years. Next, we created DR profiles for these data-rich buildings using unsupervised learning methods (e.g., K-means) to find clusters of their DR power consumption (i.e., the percentage of their baseline power consumption that was used during DR events). The results showed that the best PSC estimation model improves the accuracy of DR capacities by 92% as compared to the estimation models used in the current practice. Then, three DR profiles were identified, which indicated that a large building in New York City (NYC) has, on average, the potential of saving 67 kWh during a four-hour DR event. Furthermore, with these DR profiles assigned to more than 9,000 data-scarce buildings with a footprint of more than 50,000 square feet in NYC, we found more than 4.5 million kWh demand shaving capacity in total if these buildings were enrolled in DR.
Keywords: Demand response; Machine learning; Power demand shaving capacity; Smart grid; Building grid interaction; Demand response profiles (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922000605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000605
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118579
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().