An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection
Huan Long,
Shaohui Xu and
Wei Gu
Applied Energy, 2022, vol. 311, issue C, No S0306261922000733
Abstract:
Wind power curve (WPC) is established through data collected from the Supervisory Control and Data Acquisition (SCADA) system of each wind turbine, which can be used to analyze the operation status. However, numerous outliers are contained in SCADA data caused by wind turbine failures, shutdown maintenance or other extreme conditions to deform the wind power curve. This paper proposes a data cleaning algorithm for wind turbine abnormal data based on wind power curve image by color space conversion and image feature detection. Considering wind speed, wind power and data frequency, a three-dimensional (3D) WPC image is constructed. The scattered outliers are cleared by their statistical characteristics. The Canny edge detection and Hough transform are introduced to extract image features of stacked outliers and locate them accurately. The proposed algorithm is compared with three common outlier detection algorithms, including two data-based algorithms and an image-based algorithm. Extensive experiments conducted on the data of 22 wind turbines from two different wind farms in China indicate the efficiency, stability and reliability of the proposed algorithm.
Keywords: Wind turbine; Abnormal data cleaning; Wind power curve; Hough transform; Canny edge detection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922000733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000733
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118594
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().