Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage
Silvia Trevisan,
Wujun Wang,
Rafael Guedez and
Björn Laumert
Applied Energy, 2022, vol. 311, issue C, No S0306261922001386
Abstract:
High-temperature packed-bed thermal energy storage represents an economically viable large-scale energy storage solution for a future fossil-free energy scenario. The present work introduces first-of-a-kind experimental setup of a radial packed-bed TES, and its performance assessment based on experimental investigations. The storage performance is analyzed based on a set of dimensionless criteria and indicators. The laboratory-scale prototype has an energy capacity of 49.7 kWhth and working temperatures between 25 °C and 700 °C with a non-pressurized dry airflow. The influence of different working fluid mass flow rates and inlet temperatures during charge and discharge is assessed. The proposed storage design ensures limited pressure drop, lower than 1 mbar, and thermal losses, about 1.11 % during dwell after charging at 700 °C until a state of charge of 55.8 %. A maximum overall thermal efficiency of 71.8 % has been recorded and trade-offs between efficiency, thermal uniformity, and thermocline thickness are highlighted. This work testifies that reduced pressure drops are the key advantage of radial-flow packed-bed designs. Thermocline degradation is shown to be the main weak point of this thermal energy storage design.
Keywords: Thermal energy storage; Packed-bed; Radial-flow; High temperature; Experimental evaluation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922001386
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001386
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118672
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().