EconPapers    
Economics at your fingertips  
 

Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization

Sheng-Xiang Lv and Lin Wang

Applied Energy, 2022, vol. 311, issue C, No S0306261922001404

Abstract: This study proposes an effective combined model system for wind speed forecasting tasks. In this model, (a) improved hybrid time series decomposition strategy (HTD) is developed to concurrently extract the linear patterns and frequency-domain features from raw wind speed; (b) novel multi-objective binary backtracking search algorithm (MOBBSA) is exploited to optimize the decomposition parameters; (c) advanced Sequence-to-Sequence (Seq2Seq) predictor is utilized to uniformly process the component series, and predictions of multiple different Seq2Seq models are averaged to construct the final results. Real-world experiments from the National Wind Power Technology Center are implemented. The step-average mean absolute percentage errors of the proposed model in four datasets are 1.58%, 1.98%, 2.62%, and 2.95% respectively, which are much lower than those of eighteen benchmarks. Compared with state-of-the-art techniques, the average improvement percentage of proposed model reaches 59.92%. The non-parametric Kruskal-Wallis test is further implemented to explore the effectiveness of three designed modules (HTD, MOBBSA, and Seq2Seq), and test results demonstrate remarkable contributions of proposed modules compared with existing decomposition strategies, optimization techniques, and deep learning predictors, which indicates that the proposed model is a promising alternative for complex wind speed forecasting applications.

Keywords: Wind speed forecasting; Hybrid decomposition; Multi-objective optimization; Seq2Seq deep learning; Non-parametric test (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922001404
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001404

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118674

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001404