Indirect estimation of willingness to pay for energy technology adoption
Jing Ke,
Nina Khanna and
Nan Zhou
Applied Energy, 2022, vol. 312, issue C, No S0306261922001647
Abstract:
Adopting energy-efficient and clean technologies is key to climate change mitigation and meeting long-term sustainability goals because they significantly reduce energy consumption and related carbon emissions. Understanding existing barriers and drivers for the adoption of these energy-efficient and clean technologies will be crucial to meeting ambitious national energy and emissions targets, and the customers’ willingness to pay (WTP) is a key factor in understanding the potential for scaling-up adoption. However, in practice, commonly-used WTP estimation methods such as survey or purchase experiments are not always practical or feasible due to budget, time, labor or data constraints. This study proposes a new constrained optimization-based indirect estimation of WTP for energy technology adoption using customers’ implicit life-cycle cost-benefit analysis and market data. The empirical probability distribution of WTP is estimated using the Monte Carlo methods. This new indirect estimation method provides a deeper understanding of the barriers and customers’ willingness to adopt high efficiency and clean energy technologies, and informs the development of supporting policies and programs needed to accelerate market adoption.
Keywords: Energy efficiency; Technology adoption; Discrete choices; Willingness to pay; Cost-benefit analysis; Life-cycle analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922001647
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001647
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118701
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().