Performance evaluation of the LPG engine applied to catalytic reforming system for producing hydrogen
Seungchul Woo,
Woongil Kim,
Jungkoo Lee and
Kihyung Lee
Applied Energy, 2022, vol. 312, issue C, No S0306261922002112
Abstract:
Despite the global trend toward electrification of powertrains, when life cycle assessment (LCA) is considered, greenhouse gases (GHG) from electric vehicles, fuel cell electric vehicles, and internal combustion engine vehicles are expected to be similar depending on the source of the powerplant. A catalytic reforming system is developed, and its performance is evaluated to maximize the advantages of liquefied petroleum gas (LPG) engines. To optimize the catalytic reforming system, the performance of brake specific fuel consumption and brake specific emissions was evaluated by changing the air fuel ratio. Based on the measured values, various efficiencies were derived and performance was compared to conventional system. When the catalytic reforming system was applied under same operating conditions as the conventional system, fuel consumption and hydrocarbon emissions performance decreased. But they could be overcome by adjusting air fuel ratio. Finally, the best performance improvement was obtained by applying the catalyst reforming system and adjusting the air–fuel ratio to 1.1–1.2.
Keywords: Catalytic reforming system; Liquefied petroleum gas; Auto gas; Life cycle assessment; Air fuel ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002112
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118757
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().