EconPapers    
Economics at your fingertips  
 

Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media

Youqiang Liao, Junjie Zheng, Zhiyuan Wang, Baojiang Sun, Xiaohui Sun and Praveen Linga

Applied Energy, 2022, vol. 312, issue C, No S0306261922002513

Abstract: Methane hydrates (MHs) are deemed to be a potential energy source to meet the overwhelmingly growing demand for natural gas. The production of MHs involves many controlling processes such as heat transfer, fluid dynamics and hydrate reaction kinetics. Local thermal equilibrium (LTE) between solid and fluid phases was typically assumed when modeling the hydrate production, however, in many cases the local thermal non-equilibrium (LTNE) caused by the complex heat transfer processes at the pore scale cannot be neglected. In this work, a LTNE model was adopted to reflect the multiple heat transfer forms associated with hydrate dissociation and gas-liquid flow, particularly the solid-fluid interfacial convective heat transfer and the Joule-Thomson effect. The LTNE phenomenon and Joule-Thomson effect were hinted by a hydrate dissociation experiment carried out for model verification. The results show that the average estimation errors of temperature, cumulative gas and water production profiles between experiment and LTNE model were 7.70%, 6.63% and 4.02%, respectively, which are considerably better than those of the traditional LTE model (16.44%, 11.74% and 10.89%, respectively). A tenfold increase of interfacial convective heat transfer coefficient could reduce the local solid-fluid temperature difference by about 78.5%. A special focus was given to the Joule-Thomson effect which seemed to have less impact at the experimental condition in this work but become more significant when the gas saturation exceeds 40%. This work could add further insights into the thermal performance during hydrate dissociation in porous media, help to reveal the thermo-kinetic relationship at the pore scale and provide a more accurate estimation of the hydrate dissociation dynamics. It could be potentially employed to optimize the methane hydrate production strategies, minimize the risk of hydrate re-formation and maximize the overall energy recovery efficiency.

Keywords: Methane hydrate dissociation; Porous media; Local thermal non-equilibrium; Joule-Thomson effect; Thermo-kinetic relationship; Interfacial convective heat transfer (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002513
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002513

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118804

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002513