Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation
Jing Fang,
Chuhao Xiong,
Mingqian Feng,
Ye Wu and
Dong Liu
Applied Energy, 2022, vol. 312, issue C, No S0306261922002550
Abstract:
Ammonia (NH3) has attracted much attention as both a fuel and an energy carrier due to its transportability and cleanliness. At present, most of NH3 is synthesized by the catalytic Haber-Bosch reaction (N2+3H2⇌2NH3). Due to its energy-intensive processes for hydrogen production, high carbon dioxide (CO2) emissions as well as high pressure required for NH3 synthesis, an alternative highly efficient system is needed. In this study, an integrated system based on chemical looping ammonia generation (CLAG), which combines air separation, N-sorption/desorption (ammonia synthesis), steam generation and urea production is proposed. The system employs a novel ammonia production loop and produces steam, carbon monoxide (CO) and urea as by-products. System modelling is conducted using Aspen Plus V11 (Aspen Technology, Inc.). The results showed the energy consumption can reach 6.88 GJ/tNH3. The total CO2 emission of the ammonia synthesis system was 2.05 kg/kg NH3 in which direct CO2 emission dropped to 0.43 kg/kg NH3, and with urea production, the direct CO2 emission can reduce to −0.86 kg/kg NH3, leading to negative CO2 emissions.
Keywords: Chemical looping ammonia generation (CLAG); Energy consumption; CO2 emission (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002550
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002550
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118809
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().