A novel ensemble probabilistic forecasting system for uncertainty in wind speed
Jianzhou Wang,
Shuai Wang,
Bo Zeng and
Haiyan Lu
Applied Energy, 2022, vol. 313, issue C, No S0306261922002434
Abstract:
The quantification of wind speed uncertainty is of great significance for real-time control of wind turbines and power grid dispatching. However, the intermittence and fluctuation of wind energy present great challenges in modeling its uncertainty; research in this field is limited. A quantile regression bi-directional long short-term memory network (QrBiLStm) and a novel ensemble probabilistic forecasting strategy are proposed in this study to explore ensemble probabilistic forecasting. To verify the reliability of the proposed ensemble probabilistic forecasting system, the uncertainties of wind speed at wind farms in China were modeled as a case study. The results of comparative experiments including 15 other models demonstrate the superiority of this ensemble probabilistic forecasting system in terms of sharpness while maintaining high interval coverage. More specifically, it was observed that the prediction interval coverage probability obtained by the proposed system is above 97%, and the sharpness is improved by at least 24.21% as compared with the commonly used single models. The proposed ensemble probabilistic forecasting system can accurately quantify the uncertainty of wind speed, and also reduce the operation cost of power systems by improving the efficiency of wind energy utilization.
Keywords: Wind speed forecasts; Multi-objective optimization algorithm; Deep learning; Ensemble probabilistic strategy; Forecast uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002434
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118796
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().