EconPapers    
Economics at your fingertips  
 

Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism

Dongxiao Niu, Min Yu, Lijie Sun, Tian Gao and Keke Wang

Applied Energy, 2022, vol. 313, issue C, No S0306261922002483

Abstract: Accurate short-term multi-energy load forecasting is an essential prerequisite for ensuring the reliable and economic operation of integrated energy systems (IES). Considering the large fluctuations, strong randomness, and the multi-energy coupling relationship of regional IES, this paper proposes a novel short-term multi-energy load forecasting method based on a CNN-BiGRU model that is optimized by attention mechanism. First, the dynamic coupling relationship between multi-energy loads is qualitatively analyzed, and the influencing factors of multi-energ loads are screened based on data-driven analysis. Second, a one-dimensional CNN layer is formulated to extract complex high-dimensional features, and BiGRU is constructed to extract the time dependence from historical sequences. In particular, three attention mechanism modules are introduced to the BiGRU hidden state through the mapping weight and learning parameter matrix to enhance the impact of key information. Then, hard weight sharing is adopted to extract the inherent multi-energy coupling relationship. Finally, a novel multi-task loss function weight optimization method is applied to search for the optimal multi-task weight, which is used to balance multi-task learning (MTL) to achieve the optimization of the overall forecasting model. To validate the effectiveness of the CNN-BiGRU-Attention MTL model with loss function optimization, this paper compares the proposed model with five benchmark models by MAPE, RMSE, MAE, R2, and computational time. Compared with the traditional LSTM model, the cooling, heat, and electrical load forecasting accuracy (measured by MAPE) of the proposed hybrid model increased by 61.86%, 73.03%, and 63.39%, respectively, which demonstrates that the proposed model exhibits superior performance.

Keywords: Multi-energy load forecasting; Convolutional neural network; Bidirectional gated recurrent unit; Attention mechanism; Multi-task loss function weight optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (53)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002483

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118801

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002483