EconPapers    
Economics at your fingertips  
 

Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning

Junfeng Zhou, Yanhui Zhang, Yubo Zhang, Wen-Long Shang, Zhile Yang and Wei Feng

Applied Energy, 2022, vol. 314, issue C, No S0306261922003063

Abstract: The performance of photovoltaic (PV) cell is affected by the model structure and corresponding parameters. However, these parameters are adjustable and variable, which play an available role in regarding to the efficiency and effectiveness of PV generation. Due to strong non-linear characteristics, existing PV model parameters identification methods cannot easily obtain accurate solutions. To tackle this, this paper proposes an adaptive differential evolution algorithm with the dynamic opposite learning strategy (DOL), named DOLADE. In DOLADE, the opposite learning method expands the current elite population and the population of poor performance, improving the particles’ exploration capability. In the process of particles work, the searching area of particles is adjusting dynamically so that the particles’ exploitation capability is enhanced. The experimental data of different types of PV are tested, respectively. Three PV models are used to verify the new strategy’s accuracy and effectiveness. The proposed DOLADE is compared with several general advanced algorithms, and comprehensive experimental results are demonstrated. The results illustrate that DOLADE well extracts optimal parameters for each PV cell model and brought great competition in terms of accuracy, reliability, and computational efficiency in solving the problem.

Keywords: Photovoltaic model; Parameter identification; Dynamic opposite learning; Differential evolution; Solar energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922003063
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003063

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118877

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003063