Convenience in a residence with demand response: A system dynamics simulation model
Bilal Bugaje,
Peter Rutherford and
Mike Clifford
Applied Energy, 2022, vol. 314, issue C, No S0306261922003518
Abstract:
Demand Side Management (DSM) is a means to gain more control over energy demand to address some of the challenges of power grids. Demand Response (DR) is an approach to DSM that aims to influence the operation times of appliances; DR is often recommended for residences. Meanwhile, residents can undermine DR if it is not convenient. Therefore, there is need for tools to aid decision-making on the appropriate DR program for residences. Whilst models are used to explore DR programs, most do not measure, visualise or analyse the convenience of residents, although some models make assumptions about convenience. This paper explores convenience of a residence as timeliness by simulating four scenarios of DR programs in a single residence, using the System Dynamics (SD) methodology. In addition to delay in appliance-use that may result from DR, two indicators of convenience are proposed that consider preferences of the residence: Delay Duration Profile (DDP) and Delay Time Profile (DTP). When comparing convenience as delay, it was found that more hours of DR is better than less, earlier hours (from occupancy period) are better, and splitting or distributing DR hours during the day is better than being contiguous. Similar findings apply to DDP and DTP. Furthermore, it was found that DR leads to monetary savings and reduction in daily peak demand. This study represents the first attempt at a DR model from the bottom-up using SD, as well as using the model in decision-making analysis.
Keywords: Demand response; Demand side management; Convenience; System dynamics; Bottom-up simulation; Delay duration profile; Delay time profile (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922003518
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003518
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118929
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().