Experimental investigation of a topology-optimized phase change heat sink optimized for natural convection
Y.S. See,
J.Y. Ho,
K.C. Leong and
T.N. Wong
Applied Energy, 2022, vol. 314, issue C, No S0306261922003932
Abstract:
In this study, a topology-optimized heat sink is developed and applied to electronics cooling by utilizing a phase change material interspersed through a finned structure. The topology optimization is performed by the minimization of the global thermal compliance in the solution of the modified momentum equation with the Boussinesq approximation to account for natural convection. The optimized heat sink, namely the natural convection topology-optimized heat sink, was fabricated by Selective Laser Melting, a metal additive manufacturing technique. The natural convection topology-optimized heat sink was experimentally characterized based on its base temporal temperature and its operation time. The performance of our newly developed heat sink was then evaluated by comparing against a conventional heat sink design, a baseline design with no surface enhancements, and a second topology-optimized heat sink based on heat conduction. The results show that the natural convection topology-optimized heat sink has a lower base temperature compared to the conventional heat sink, but higher base temperature than the second topology-optimized heat sink during the PCM melting phase. However, the natural convection topology-optimized heat sink has an operation time which is 31.0% longer than all the other heat sinks with enhanced structures. Through visualization of the melting process, we can deduce that the longer operation time of the natural convection topology-optimized heat sink is primarily due to the movement of the melt front which results in a slower melting, while optimizing natural convection of the melted material. These mechanisms maintain a reasonably low heat sink base temperature.
Keywords: Topology optimization; Natural convection; Heat sink; Phase change material; RT44HC; Additive manufacturing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922003932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003932
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118984
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().